/*{
"CATEGORIES": [
"Geometry"
],
"CREDIT": "VIDVOX",
"DESCRIPTION": "",
"INPUTS": [
{
"DEFAULT": 0.5,
"LABEL": "Saturation",
"MAX": 1,
"MIN": 0,
"NAME": "saturation",
"TYPE": "float"
},
{
"DEFAULT": 1,
"LABEL": "Brightness",
"MAX": 1,
"MIN": 0,
"NAME": "brightness",
"TYPE": "float"
},
{
"DEFAULT": 1,
"LABEL": "Mix Amount",
"MAX": 1,
"MIN": 0,
"NAME": "mixAmount",
"TYPE": "float"
},
{
"DEFAULT": 0,
"LABEL": "Mask Shape Mode",
"LABELS": [
"Random",
"Rectangle",
"Triangle",
"Circle",
"Diamond"
],
"NAME": "maskShapeMode",
"TYPE": "long",
"VALUES": [
0,
1,
2,
3,
4
]
},
{
"DEFAULT": 0,
"LABEL": "Anchor To Bottom",
"NAME": "anchorToBottom",
"TYPE": "bool"
},
{
"LABEL": "Reset",
"NAME": "resetImage",
"TYPE": "event"
}
],
"ISFVSN": "2",
"KEYWORDS": [
"Abstract",
"Geometric"
],
"PASSES": [
{
"DESCRIPTION": "Holds the last render state for drawing over",
"PERSISTENT": true,
"TARGET": "lastState"
}
]
}
*/
float rand(vec2 co){
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
vec4 rand4(vec4 co) {
vec4 returnMe = vec4(0.0);
returnMe.r = rand(co.rg);
returnMe.g = rand(co.gb);
returnMe.b = rand(co.ba);
returnMe.a = rand(co.rb);
return returnMe;
}
vec3 hsv2rgb(vec3 c) {
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
const float pi = 3.14159265359;
vec2 rotatePoint(vec2 pt, float angle, vec2 center)
{
vec2 returnMe;
float s = sin(angle * pi);
float c = cos(angle * pi);
returnMe = pt;
// translate point back to origin:
returnMe.x -= center.x;
returnMe.y -= center.y;
// rotate point
float xnew = returnMe.x * c - returnMe.y * s;
float ynew = returnMe.x * s + returnMe.y * c;
// translate point back:
returnMe.x = xnew + center.x;
returnMe.y = ynew + center.y;
return returnMe;
}
float sign(vec2 p1, vec2 p2, vec2 p3)
{
return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}
bool RotatedPointInTriangle(vec2 pt, vec2 v1, vec2 v2, vec2 v3, vec2 center)
{
bool b1, b2, b3;
vec2 v1r = v1;
vec2 v2r = v2;
vec2 v3r = v3;
b1 = sign(pt, v1r, v2r) < 0.0;
b2 = sign(pt, v2r, v3r) < 0.0;
b3 = sign(pt, v3r, v1r) < 0.0;
return ((b1 == b2) && (b2 == b3));
}
float isPointInShape(vec2 pt, int shape, vec4 shapeCoordinates) {
float returnMe = 0.0;
// rectangle
if (shape == 0) {
if (RotatedPointInTriangle(pt, shapeCoordinates.xy, shapeCoordinates.xy + vec2(0.0, shapeCoordinates.w), shapeCoordinates.xy + vec2(shapeCoordinates.z, 0.0), shapeCoordinates.xy + shapeCoordinates.zw / 2.0)) {
returnMe = 1.0;
// soft edge if needed
if ((pt.x > shapeCoordinates.x) && (pt.x < shapeCoordinates.x)) {
returnMe = clamp(((pt.x - shapeCoordinates.x) / RENDERSIZE.x), 0.0, 1.0);
returnMe = pow(returnMe, 0.5);
}
else if ((pt.x > shapeCoordinates.x + shapeCoordinates.z) && (pt.x < shapeCoordinates.x + shapeCoordinates.z)) {
returnMe = clamp(((shapeCoordinates.x + shapeCoordinates.z - pt.x) / RENDERSIZE.x), 0.0, 1.0);
returnMe = pow(returnMe, 0.5);
}
}
else if (RotatedPointInTriangle(pt, shapeCoordinates.xy + shapeCoordinates.zw, shapeCoordinates.xy + vec2(0.0, shapeCoordinates.w), shapeCoordinates.xy + vec2(shapeCoordinates.z, 0.0), shapeCoordinates.xy + shapeCoordinates.zw / 2.0)) {
returnMe = 1.0;
// soft edge if needed
if ((pt.x > shapeCoordinates.x) && (pt.x < shapeCoordinates.x)) {
returnMe = clamp(((pt.x - shapeCoordinates.x) / RENDERSIZE.x), 0.0, 1.0);
returnMe = pow(returnMe, 0.5);
}
else if ((pt.x > shapeCoordinates.x + shapeCoordinates.z) && (pt.x < shapeCoordinates.x + shapeCoordinates.z)) {
returnMe = clamp(((shapeCoordinates.x + shapeCoordinates.z - pt.x) / RENDERSIZE.x), 0.0, 1.0);
returnMe = pow(returnMe, 0.5);
}
}
}
// triangle
else if (shape == 1) {
if (RotatedPointInTriangle(pt, shapeCoordinates.xy, shapeCoordinates.xy + vec2(shapeCoordinates.z / 2.0, shapeCoordinates.w), shapeCoordinates.xy + vec2(shapeCoordinates.z, 0.0), shapeCoordinates.xy + shapeCoordinates.zw / 2.0)) {
returnMe = 1.0;
}
}
// oval
else if (shape == 2) {
returnMe = distance(pt, vec2(shapeCoordinates.xy + shapeCoordinates.zw / 2.0));
if (returnMe < min(shapeCoordinates.z,shapeCoordinates.w) / 2.0) {
returnMe = 1.0;
}
else {
returnMe = 0.0;
}
}
// diamond
else if (shape == 3) {
if (RotatedPointInTriangle(pt, shapeCoordinates.xy + vec2(0.0, shapeCoordinates.w / 2.0), shapeCoordinates.xy + vec2(shapeCoordinates.z / 2.0, shapeCoordinates.w), shapeCoordinates.xy + vec2(shapeCoordinates.z, shapeCoordinates.w / 2.0), shapeCoordinates.xy + shapeCoordinates.zw / 2.0)) {
returnMe = 1.0;
}
else if (RotatedPointInTriangle(pt, shapeCoordinates.xy + vec2(0.0, shapeCoordinates.w / 2.0), shapeCoordinates.xy + vec2(shapeCoordinates.z / 2.0, 0.0), shapeCoordinates.xy + vec2(shapeCoordinates.z, shapeCoordinates.w / 2.0), shapeCoordinates.xy + shapeCoordinates.zw / 2.0)) {
returnMe = 1.0;
}
}
return returnMe;
}
void main() {
vec2 loc = isf_FragNormCoord.xy;
vec4 returnMe = (resetImage) ? vec4(0.0) : IMG_NORM_PIXEL(lastState,loc);
vec4 seeds1 = TIME * vec4(0.2123,0.34517,0.53428,0.7431);
vec4 randCoords = rand4(seeds1);
if (anchorToBottom == true) {
randCoords.y = 0.0;
}
int shapeMode = (maskShapeMode != 0) ? maskShapeMode - 1 : int(floor(3.99 * rand(vec2(TIME+0.213,0.43*TIME+0.831))));
float isInShape = isPointInShape(loc,shapeMode,randCoords);
if (isInShape > 0.0) {
float randHue = rand(vec2(TIME,0.32234));
vec4 newColor = vec4(0.0);
newColor.rgb = hsv2rgb(vec3(randHue,saturation,brightness));
newColor.a = 1.0;
returnMe = mix(returnMe,newColor,mixAmount);
}
gl_FragColor = returnMe;
}